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Chapter 1

Introduction

Numerical models of physical phenomena often employ a representation of the computational space which is discrete.
For example, a differential equation may be solved on a rectangular grid of discrete points through finite difference
methods. While these representations of solutions are valuable, it is often desirable to approximate the solution in the
regions between solution points or “nodes”.

For slowly varying functions, a linear interpolation of values is often employed. This approach may provide sufficient
accuracy in some cases. However, simulations which require many iterations are often adversely affected by the error
introduced by linear interpolation. For example, small surface faceting errors for optical surfaces, introduced early in
propagation are often manifested as significant aberrations.

Our current application for a generalized spline implementation is rooted in the need to solve coupled physical prob-
lems through differing methods. For example, the motivation for this technical report was the need to combine a
heat transfer model with two different laser beam propagation codes. In both cases the temperature distribution in the
material induces a change in the optical properties, such as refractive index. The coupled code for the laser beam prop-
agation simulation require values of the optical properties on either a differing grid spacing (for fast Hankel transform
methods), or at arbitrary points within the material (for ray tracing methods).

We have proposed a modified Monte-Carlo approach to the solution of the radiative transport equation which has
the unique feature of incorporating refractive index gradients within a multi-layer biological tissue model. In the
approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than
linear trajectories. The method can be applied to the specific problem of incorporating thermal lensing and other
non-linear effects in turbid media (biological tissues) by coupling the radiative transport solution into heat-transfer and
damage models. In turn, the method can be applied in the establishment of laser exposure limits for tissue-penetrating
wavelengths, as well as a number of additional applications in imaging and spectroscopy as well as vision science.
Presented here is a short summary of the theory and methods for the implementation of a spline interpolation suitable
for accurate one and two-dimensional functional distributions. Included is source code for both the MatLab and C++
programming languages. Example data are presented, along with a short stability and error analysis for problems of
recent interest to our research.

1
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Chapter 2

Definitions

2.1 Splines

Suppose [a, b] is a closed, finite interval. We select N distinct points, or knots, xp, ..., xy strictly between a and b.
That is, we have
a=xp <X <xp<...<xy<2xys =b. 2.1)

The intervals between each consecutive pair, x; and x;,; fori = 0... N form a partition of [a, b], as long as we carefully
define

I; = [x;, xiy1)

foralli=0...N-1,and

Iy = [xn, xn41]

so that the right endpoint b is in the partition, which we call A.
Let #,, be the space of polynomials of order m. Recall that

P = {p(x) = Z cx ™l cie R}. (2.2)

i=1
P5, for example, is the set of quadratic functions.
Finally, let /n be an integer, —1 < /n < m — 2. This will determine the smoothness we would like at our knots. If

m = —1, then we do not require the spline, or any of its derivatives, to be continuous at the knots.
S(P.n; m; A) denotes the space of polynomial splines of order m with knots xy, ..., xy. We say that s is in this space if
there exist polynomials s, ..., sy € P, such that

1. s(x)=s;(x)¥x€l,i=0,1,...,N, and
2. Disi_y(x;) = DIsi(x;) for j=0,1,...,mandfori=1,...,N.
Theorem 2.1.1. [4] S(P,,; m; A) is a linear (vector) space of dimension m + (m — in — 1)N.

Definition 2.1.2. [4]Let the partition of [a,b] {x;}Y., and in be given. A = {y,'}i"ﬁ(m*m*lw is the extended partition

associated with S(P,,; m; A) provided the following conditions hold:

L. yI<y <+ < Y2m+(m-in—-1)N

2.y < <yn<a

3.b< Ym+(m—-m—1)N+1 <--- < Yom+(m—in—1)N

3
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4. Ym+1 < Sym+(m—ﬁz—1)N = —— —_——
P S o | seeey XNyeoos XN

2.2 B-splines

For numerical applications, a local, symmetric basis is more suitable than, for example, a one-sided basis [4]. We
therefore choose to use a B-spline. Given integers i and m > 0, for all real x the mth-order B-spline associated with
knots y; through y;,, is given by

mpon | ED i Yiml(x — )" ify < Y and x >y
Qi) = { 0 otherwise 23)
where [ ] denotes the divided difference. For a function f, the divided difference [74, ..., #+1]f is given by
1o - 7Y f)
1 n - Y fl)
det| 1 : ’ : :
1ty oo 70 fte)
[y st f = . S 2.4)
| S 7
SRR ot 4
det| 1
A

Depending on spacing of the knots, however, B-splines can be very large or very small which can yield unfavorable

results computationally. The normalized B-spline associated with knots y;, . .., i, 1S given by
N (xX) = Giem =y Q' (X). (2.5
4
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Chapter 3

Approximation in one dimension

3.1 The objective function in one dimension

Once we have determined the spline basis we will use, we need to determine the appropriate coefficients to approximate
the function n at arbitrary points in the (7, z) plane.

For the time being, we will consider our basis for r. Let the i basis function be given by ¢;, and let the number of
basis elements (the dimension) be K = m + (m — i — 1)N. Then our estimate 7 for the function n at an arbitrary point
r is given by

K

A(r) = ) cigi(r) (3.1)

i=1

and ¢ = (cy, ¢y, ..., ck) are coeflicients to be determined.
We would like to choose these coeflicients so that they give us the best possible approximation to the true values of the
function. Our idea of what kind of approximation is “best” depends on the particular application. However, certainly
we would like the approximation to come close to the known values n at the gridpoints. Secondly, we would like the
approximation to remain close to the data we have on the grid, without oscillating wildly between gridpoints.
We can state these goals mathematically as follows. We seek a vector ¢y such that

J(cp) = minJ (3.2)
C
where

W -1 dr. (3.3)

N Tf Tf
J©@ = 3 |t =ty + f () — (PP dr + as f
=

1o o

Undefined variables are given in the following table.

We do not put a weight on the first part of the expression, 2];’: . |7z(r ) —n(r j)|2 since we assume that the weight on this
part of the expression is non-zero, and normalize it to one. Thus ;| and a, are decided with respect to the importance
of the first term.

Also, we choose @ > a3, since the second and third terms are a linear combination of the squared L, norm and
squared Sobolev norms. That is,

5
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Table 3.1: Table of Variables
the number of points at which we have data

the dimension of the spline; the number of basis functions
the order of the spline
m | the smoothness of the spline at the knots
n(r;) | the data at r;
I(r) | linear interpolation between the known gridpoints
| a weight that determines the importance of our approximation 7
remaining close to /(r)
@, | aweight that determines the importance of our approximation’s
derivative 72’ remaining close to /’(r)

I|Ix=

7 -1 dr

ar lii(r) — [n)I[3, + az |lii(r) — I3,

= a frj |7(r) — l(r)|2 dr + ay (frf |72(r)

—I(r)f* dr + f ! ' (r) — l’(r)|2) (3.4)

= ( +a2)ff/‘ () = 1P dr

Tf
Zf
o

Ty r'f
a; f 1i(r) = (P dr + as f
o ro

7 -1 dr.

Thus we have

a; = ayt+a 3.5
= a+a
Sa—a=a =0. (3.6)

3.2 Necessary and sufficient conditions for minimization

The necessary condition for J being minimized with respect to ¢ is that

g—J=0f0rk=1...K. (3.7)

Ck

Thatis, fork=1...K,

6
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N

J=1

Z a(rj) — n(r;) ¢k(r,)+alf (a(r) = I(r) ¢u(r) dr

+ay f (7@ () = I'(") ¢(r) dr

K

N (K ry
Z(Zcmbi(r,-)—n(rj>)¢k<r,-)+a1 f [Zcmr)—l(r))m(r) dr
j=1 \i=1 7o

i=1

K

rf
var [ (Z () - z’(r)] ¢ dr

i=1

i=1 =1 j=1

Tf
o f Hr)u(r) dr+a22c,- f $(Ni(r) dr - a

i=1 j=1

N

o

Now, expanding this for all £ into matrix form,

1o

K N K re
D (Z ¢,<r,>¢k<r,)] Dinrpdury +ar Y e | i) dr

T
f U'(neg (r)dr

ro

K
Zc[Z@(r,m(r,)m f $i(Pei(r) dr + f ¢,<r)¢k<r)dr]

o

Ty g
- Ypay-ar [ty dr-ax [ rewear
=1

(Al + (X]Az + CL’QA3)C = (b1 + aiby + 012b3)

where

zgzl $i1(rppi(r)) B ba(r)ea(r)) SN bk (r))
S o1 ga(r) XL, Ga(ra(r)) S ¢k (rea(ry)
1= . . .
S 10 ek(r)) S ok (rpgx(r)
f9 $1(r)1(r) dr f,;" $2(P$1(r) dr IR GIAGKS
R I a1 ar - [[7 2(nga(r) dr I, ¢x)a(r) dr
2 = . . .
I #1(¢x(r) dr I x(rgx(r) dr
[ #,(r)¢)(r) dr f,;f ¢,(r)e) (r) dr [ ¢4 (r) dr
R I einesydr [ i) dr I # () ar
3= . . .
I 8¢ (r) dr I &4 ((r) dr
S n(rpéi(r)) f 1(r)g (r)dr
S n(rea(r) f I(r)ga(r)dr
1= : b, =
S (e (r)) I Dou(dr

7
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f,;f I'(Ng; (rdr
A GrAG

3

N P

Note that all of these matrices are known or can be calculated. Also note that the top three are symmetric, and are
generally banded since B-splines are local in nature.

The sufficient condition is that J must be convex (concave up) with respect to ¢. We know, then, that the Hessian must
be positive semi-definite. The Hessian is symmetric, and given by

H=A;+A; +A;. (314)

Hence the sufficient condition is satisfied if the eigenvalues of H are non-negative [6]. The matrices Ay, Aj, and Az
are banded, as mentioned above. If we can make the stronger assumption that H is diagonally dominant, which is
probably reasonable for B-splines, the Gershgorin Circle Theorem [7] states that all real parts of the eigenvalues will
be positive. Further, since these matrices are symmetric (Hermitian) H is also Hermitian; the eigenvalues are therefore
real.

Hence, as long as the sum of these matrices is diagonally dominant, the eigenvalues will be positive, and the sufficient
condition is satisfied.

8
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Chapter 4

Approximation in two dimensions

4.1 The objective function in two dimensions

Recall that we would like to approximate n(r, z), a function on two variables when given data on a two-dimensional
grid. Letting ¢ represent spline basis functions in the r direction, and ¢ represent spline basis functions in the z
direction, we seek coefficients ¢;; such that

K P
A(r,2) = ) ) cijdirw2) @.1)

i=1 j=1

where 7 denotes our approximation of n, K is the size of the spline basis in r and P the size in z. Let C be defined by

i1 Ci2 - CIK
€1 Cx -t Ok

C=| . o R (4.2)
cpy - -+ Cpk

Thus our spline approximation of the function can be rewritten in matrix form:

fi(r,z) = YT C® 4.3)

where ¥ = (1(2), ..., ¥p())" and @ = (¢ (r), ..., ¢x(r)".

We run into obstacles when we move to two dimensions from one, however, regarding what to use for an objective
function. Of course we would like to minimize the distance between our approximation and our data at points where
we have data; this is not hard to generalize. However, it is difficult to generalize the method of keeping the interpolating
curve smooth between grid points.

In one dimension, the linear interpolation between grid points is uniquely defined by simply connecting the data
points with line segments. The analog to this in two dimensions would be to define a plane between sets of three
points. However, we are working with a rectangular grid, and there are many ways to choose sets of three points that
will alter our approximation.

In Figure 4.1, we see a possible problem with triangulating the grid in an arbitrary way. If we divide the rectangles
formed by the grid into half along the diagonal we see that one interpolation may give us a very different approximation
for points not on the grid than the other, though this example is extreme.

In Figure 4.1 we see two different triangulations of the same grid. Call the first #; and the second #,. Using a lin-
ear combination of #; and #, is one possible strategy to keep our approximation from oscillating too much without
restricting it in an artificial manner. We define the objective function J as follows.

9
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g5 0

99.5
100 1

Figure 4.1: Two triangulations of a rectangular grid. The four corner points are hypothetical data, and the middle point
on each is the interpolation in each case.

Ny N

Jey = ZZ'ﬁ(rist)_n(ri’Zj)F +a (f/f, li(r,2) = t1(r, ) dzdr
i=1 j=1 n Jz

r'f Zf rf Zf
+ f f i(r, 2) — ta(r, 2)I> dz dr) +a ( f f
ro 20 ro 20
r'f Zf 2 r'f Zf
+f f |fz, - tl,,.l dz dr + f f
o 20 ro 20
s 2
+ f f |t — 1o, dzdr
ro 20

where #; represents the planar interpolation where the grid has been triangulated in one direction (see Figure 4.1 for
illustration) and ¢, represents the other. Note that the definition of the Sobolev norm tells us that a; > a;, as with the
1-D case.

Let 6, y be integers such that 1 < 6 < N;, 1 <y < N, where N is the number of grid points in the r direction and N,
the number of grid points in the z direction. Then

fi.—t|" dzdr (4.4)

i, — t2,2|2 dzdr

10
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aJ 2, & o ( 7% i
— = 2 i(ri,z;) —n(ri,z;)) — + 2 ff ii(r,z) — t1(r,z2)) —— dz dr
dcsy ;;( (riszj) = n( 1)) aca, 1 e (#i(r,z) — (1, 2) dcsy

et on et
+f #i(r,2) — to(r, z)) —_— dz dr) +2a, (f (i, — 1 Z) e dz dr
rovY 20 1o ZO

fwfn(n, tlr)—dzdr+ff (7, - tzZ) dzdr

rf 2f
+ f (i, — 1 ,) —L 4z dr)
o (9 6)/

K ; N] Nz Nl NZ
= 2 lz D D borbkr) Y (Wp@uy () = . s D nlrin 2y ()
k=1 p=1 i=1 j=1 i=1 j=1

K P Iy Zf Ty Zf
+ay [222% f e(r)s(r) f (p Wy @) dzdr - f 65(r) f (t1(r,2)

k=1 p=1 o

K P s zf
+15(r, 2)) Uy (2) dz dr +a2[ D e f S (r)ps(r) f (v, W) dzdr

k=1 p=1

f $s(r) f (nz+rzZ)wy<z>dzdr+2Zchp f AGUAG)

k=1 p=1

fv (tﬁp(z)tlfy(z)) dz dr—f' ¢;(r)fv (t1r + 12,) Yy (2) dz dr)]

20

Our necessary condition is that all partials are zero. That is, after some regrouping, for every v, d,

K P
2.2,
=1

p=1

N,

¢§<r,)¢k<r,)2wp(z,wz,) + 2 Z ch,, f Bi(r)gs(r)

=1 k=1 p=1

K P
f Up(Dry () dz dr + 2 [ZZ Cip f u(r)ps(r) f W (W) dz dr
20 p= o 20

k=

K P ry 2 N, N>
> > e f AGIAG! f Yp(2ry(2) dz dr]—Zasa(ri)Zn(r,»,z,-m(zj)
20 i=1 Jj=1

k=1 p=1 o

rf 2 rf 2
- f f¢a(r) f T(r,2)¥y(2) dz dr — az ( f #5(r) f T,(r, 2, (2) dz dr

<0

+f‘/‘ ¢6(")ff Tz(r,z)lﬂ;(z) dz dr) = 0

where T(r,2) = t1(r,2) + t(1, 2).
In matrix notation, we have a system that looks like

A]CDl + 20’1A2CD2 + 20’2 (A3CD2 + AzCD3) = b] + a’]bz + (lz(b3 + b4)

where
Zyjl nZpi(z) - 27:21 Up(Z)1(z;))
Ar= s s
SR EWE) e T weE W)
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4.5)

(4.6)

“4.7)

4.8)



251'1 é1(rd1(ri) Z?Ql d1(r)dx(ri)
D, = : :
N ) . Ny . .
Zi:l ¢K(rt)¢1(rl) Zi:l ¢K(rl)¢l((rt)
[ ni@ui@) dz [ wn@ue@) dz
A; = : :
L wr@un @) dz L wr@ue) dz
I 1) dr I (g dr
D, = : :
I b1 () dr I ox(x(r) dr
[ wi@vi @) dz [ wi@u(@) dz
Az = : :
[ vy () dz [ w2 dz
GG, I 8\ (g dr
D; = E :
1 @ (g () dr I ¢ (i(r) dr
Y1(z1) U1(zn,) n(ri,z1) n(ry, 1) é1(r1)
bi=| : : : :
wP(Zl) l!/P(ZNz) n(rl’ZNz) n(er,ZNz) ¢l(rN1)
s $1(r) 2
b, = f : f T(’”»Z)( Vi), -, Yp(2) ) dz dr
gk )7
rf ¢I (r) 2f
b3 = f f TZ( '10,] (Z)s Y d’:D(Z) ) dZ dr~
P Uk )7
Ty ¢/1 (r) 2f
b= [ | [ T e wee ) dear
T g )7

ox(r1)

¢K(."N1)

4.9)

(4.10)

@.11)

4.12)

4.13)

4.14)

(4.15)

(4.16)

(4.17)

The matrices A;, D; are banded (since our bases are B-splines) and symmetric for i = 1,2, 3; A;, D; as well as b can

be calculated. However, this system is difficult to solve in its current form. We tackle this in the next section.

4.2 Solving the system

We replace multiplication of three matrices with multiplication by a matrix and a vector to make the system easier to

solve. That is, for each term A;CDj,
AiCDj il A;nc

and for each i
bi i bl/
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where ¢ and b are vectors of length k X p and A, is a square matrix with k X p rows and columns. Then we have the
linear system

(A7 +201A5 + 205 (Af + AJ)) ¢ = bj + b} + az (b +b}). (4.18)

The modified system could be formed in different ways, but for consistency we describe one approach. We obtain ¢
by stacking up the columns of C, one on top of the other from left to right, and do the same for b;. We construct the
matrix A;, from the matrices A; and Dj in the following manner. For any term A;CD; if

dy dp - dix
doy dyp - d
p=| . . : (4.19)
dgi - o dix
then we let
diuAi dyAi - diA;
dipAi  dpA;i - dA;
A;n = . . . . (4.20)
dikAi dgAi - dgxAi

Once we determine the values for ¢ from Equation 4.18, we can reassemble ¢ back into its original matrix form C by
unstacking the columns, and use Equation 4.3 to find an approximation of the function n at any point (7, z).

13
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Chapter 5

Tracing rays using Runge-Kutta methods

We can apply the method outlined in the previous chapters to determine the refractive index at any point in two
dimensions. Next we assume that, through these methods or analytically, we can determine the refractive index at any
point in a medium. This information in combination with the ray trace equation gives us an approximation for the path
a ray may travel through the medium. We discuss a method for doing this in this chapter.

5.1 The ray trace equation

Recall that the ray trace equation can be expressed [5]
d*r
dr?

where r = xi + yj + zk, and n(r) is the refractive index distribution at r. ¢ is defined as

=nVn .1

d
= | £ (5.2)
n
where ds is an arc length measure.
Introducing the optical ray vector T as
dr
T=— 53
7 (5.3)
allows us to rewrite the second-order ray trace equation as a system of first-order equations:
dr
— =T 54
o (5.4
dT

To determine the path of a ray through a medium, we now need only numerically solve this system of ordinary
differential equations.

5.2 Runge-Kutta methods

The Runge-Kutta methods are a set of methods that numerically approximate the solution of an ordinary differential
equation or a system of ordinary differential equations. We will describe the idea of Runge-Kutta methods, the classical
Runge-Kutta method, and finally the variation we chose to use for this problem, a Runge-Kutta-Fehlberg method
known as RKF45.
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5.2.1 General Runge-Kutta Methods

Consider the initial value problem

Y® =1y, ylo)=yo. (5.6)

Since we often cannot solve such a system analytically, as is the case with the ray equation, we use the information
given in the initial value problem to find a numerical solution. We know the initial value of the vector y, and we know
the derivative of y with respect to ¢. Using the derivative, we can take small steps along ¢ starting with #y and estimate
y at each step. That is, for a reasonably small value of the step size A,

y(& +h) = y(0) + h £z, y(1)). 5.7

We can iteratively use the above expression starting with the initial value to estimate y at different values of 7. This
method is called Euler’s method or the polygon method [6].

Euler’s method, however is a method of order 1, which means that the magnitude of the difference between the true
difference quotient and the difference quotient for the approximation is O(h') = O(h).

Runge-Kutta methods are one-step methods that generalize Euler’s method by using more points to estimate the
function value at each step. Using a Runge-Kutta method instead of Euler’s method allows us to achieve greater
accuracy with larger step sizes. For example, the classical Runge-Kutta method [6] is of order 4. The classical method
is given by

h
Yu = ¥Yn-1 + g(kl + 2Ky + 2Kk3 + Kky) (5.8)
with

k1 = f(tn—l’Yn—l) (59)

h hk
k, = f(tnl 5V 71) (5.10)

h hk
k; = f(tn_l 5 Yat + 72) (5.11)
ki = f(tuy +hy+hks). (5.12)

Note the similarity to Simpson’s rule. While this method achieves better accuracy than Euler’s method, we are left
with the problem of how to choose 4. It would be inefficient to use trial and error with various step sizes, trying to
determine if our approximation is good enough. This is the motivation for Runge-Kutta-Fehlberg methods.

5.2.2 Runge-Kutta-Fehlberg methods

Runge-Kutta-Fehlberg methods use Runge-Kutta methods to determine whether the correct step size 4 is being used
at each step, and to choose the next step size [6]. Specifically, at step n two approximations are made: one, say y,,
using a Runge-Kutta method of order p, and the other, say z, a Runge-Kutta method of order p + 1. If the difference
[v» — zu| 1s below a certain tolerance, one of these approximations is accepted, a step size for the next step is calculated,
and the procedure is repeated for the next step.

Since at any step n we calculate two approximations, y, of order p and z, of order p + 1, we much choose which one
to use. While it seems logical to take the higher-order approximation, and this is often done, the error analysis done
automatically as we perform the Runge-Kutta-Fehlberg method applies to the order p approximation. It is therefore
advisable to take the order p approximation y, particularly in the case of stiff problems. [2]
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5.2.3 Implementation

We employ a Runge-Kutta pair consisting of methods of order 4 and 5 as given in [3]. To move from y,_; to y, we
must compute the following six vectors.

ki = f(t1,¥01) (5.13)
k, = f(t,,_l + Ll‘h, Vo1 + %klh) (5.14)
k; = f(t,,_l + %h, Vo1 + (33—2](1 + 3221(2) h) (5.15)
A NN M-NE
ks = f(z,,1 + Ry + (%k1 — 8K, + %1@ - %m) ) (5.17)
ke = f(t,,l + %h Vo1 + (—%k1 + 2k, — %1@ + %m - % s)h) (5.18)

Using these six vectors, two approximations are made. The first is of order 4:

25 1408 2197

1
Vot [k 4 kg + e~k 1
Y= Yn ‘+(216 1T 2565 > T 4104 T 5 5)h (5.19)

and the second, of order 5:

—k; + ks + - —ks + =k 5.20
135 712825 56430 © 50 0 55°° (:20
To determine whether we should accept one of these approximations for the nth step, we test whether the difference
in the two approximations is less than a predetermined error control tolerance, €. That is, we accept the Sth-order
approximation if

( 16 6656 28561 9 2 )
Zy, =Yu-1 + h

¥ — 24| < €. (5.21)

The value of & for the next step is then chosen by finding a scalar ¢ using the following expression.

1/4
€h
=[— (5.22)
! (2|zn —ynl)

We determine our next step size, say /,,,,, by multiplying g with 4. That is

hpew = Clh (5.23)

Naturally we must consider the possibility of the denominator of g being 0 when y, = z,. For numerical purposes,
we choose a maximum step size value, say /., so that if at any time ¢ is very large, or if the denominator of ¢ is 0,
we take h,,,,, as our step size for the next iteration. We also choose a minimum step size, /,,,, to prevent the program
from becoming too expensive to run.

5.2.4 Stability

While knowing the order of the Runge-Kutta method we use gives us an estimate in terms of % of the order of the
error per step in our method, we still must keep in mind the possibility of instability in our method, leading to an
approximation of the solution to the differential equation that grows further away from the solution as ¢ increases.

To consider the possibility of stability problems, we find our region of absolute stability in the complex plane. Consider
the ordinary differential equation

17
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



15%

10° The solution to dy/dt=—15y, y(0)=1000

0.5

o

-0.5

Solution, y = 1000 e

ANANN

A

A

oA

vvv\/\/\/\/
/

Euler method, h=1/

2.5

Figure 5.1: Although the solution approaches 0 as # — oo, the Euler method approximation using step size A = 1/7
does not. This is an example of instability.

Y (1) = (0.

(5.24)

We can express a Runge-Kutta method in vector form as follows [1].

Y
Y,
Y;
Yn

Yn-1
Yn-1 + haZlf(Yl)

Yn-1+ h [aslf(Yl) + ast(YZ) +eee as,s—lf(Ys—l)] ,
Va1 + R[b1f(Y1) + baf(Y2) + - by f(Y))]

(5.25)
(5.26)

(5.27)
(5.28)

In the fifth-order method described in (5.20), for example, k; = f(Y;) fori = 1,2,...,s = 6. This can equivalently be

written:

where Y = [Yy, Y, ..

Y = y,_1e + hAf(Y).
Y e=11,1,...,1]" and

0o -

a| 0 N

A=| a1 a2 O
Ay
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Also, letb = [by, by, ...,b,]" and let z = Ah. Using the properties of the simple ODE (1) along with (5.29) gives us

Y = y,e+zAY (5.31)
Yn = Yn—l+ZbTY (5.32)

We would like to find the region of stability. From [1] the function r(z) determining this is

ro) = 2= (5.33)
Yn-1
b’Y
= 145 (using Equation 5.32)
Yn-1
= 1+z7
Yn-1
= 1+zb7 (e + = AY) (using Equation 5.31)
Yn-1
0 0 y
ar 0 0 n—1
n—1 + ha Y
e les 4y an 0 0 y 1 21 f (Y1)
Yn-1 0 N
ag . . g5 1 0 Yn-1+ h [aslf(Yl)) +-0+ as,s—lf(Yx—l)]
= 1+ ([+A+7A%+ - +27'A e (5.34)
For a Runge-Kutta method of order p, if k < p
T A k-1 1
b'A"e= — (5.35)
k!
from [1]. Thus
Z bad
@) =142+ =+t = ey o+ o7 (5.36)
2! p!
where fori = p+1,p +2,...s, the coefficient ¢; = b7 A""'e. Now, for our situation we have
0 0 0 0 0 O
% 0 0 0 0 0
9
= %5 0 0 0 0
A=l b B ome o o (5.37)
WO
g 8 33 Tam 0 O
28 5 Bu B _nog
27 2565 4104 3
and
16 6656 28561 -9 2
bT: TAe’' Y TARome’ e AN’ en’ 2 | ° 5.38
1357 7 12825 56430 50 55 (5-38)
We therefore have the polynomial
23 4 5
-z z z 6
) =1+z+ =+ — + — + — +.000480769230777". (5.39)

2 6 24 120

To determine the stability region, we must find out when r(z) < 1. Using a routine from [1] we plotted the stability
region in the complex plane, the interior of which is the set of values of z for which the approximation of the test

function y’(¢) = Ay(¢) is stable.
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Stability Region for RK4 and RK5

RK5.~"

1

o
(SN

Re(z)
Figure 5.2: The region of absolute stability for RK4 and RKS5 given in (5.19) and (5.20).
While we use a Runge-Kutta-Fehlberg method rather than a Runge-Kutta method, our approximations are in fact

determined by the Runge-Kutta method of order 4 or 5 whose stability region is shown. Therefore, assuming # is
always chosen such that z = Ak is in the intersection of the two stability regions, our method is also stable.

20
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



Chapter 6

Conclusion

Given data values for a function on a two-dimensional rectangular grid, using B-splines allows us to estimate with
relative computational ease reasonable values for the function at any point in the space covered by the grid. Two
advantages that B-splines provide are their local nature, and the ability to combine them using tensor products. We
demonstrated in this report how to make the system of tensors that results from using a B-spline basis in two dimensions
into a more standard matrix system.

The next step is to extend the use of a B-spline basis into three dimensions, and then to n dimensions for any integer
n > 1. For a cylindrically symmetric three-dimensional space, the two-dimensional procedure that we have outlined
should be sufficient if the problem is set up to exploit the symmetry. For a more general space, extension to n uses the
same idea as the problem in two dimensions, and in theory is not much more difficult. The challenge, however, lies in
restructuring a system of high-rank tensors into a system which can be implemented more easily on a computer.
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Appendix A
Code

Given data on a two-dimensional grid, we implement the theory mentioned in the previous sections to approximate
the function of interest. We develop the following routines to achieve this. An implementation in C is given in A.1,
followed by an example. MATLAB code is given in A.3.

A.1 C code
A.1.1 VBASIS

#include "spline.h"

output vBasis(double x[], double grid[], int order, int derivative, int xLength,
int gridLength)
{

/ Fhhhhhhhhhh RN RN NN R Rhhhddddddedededddededededededededededededededhhh NN NN NN hhhddt

* @Author: Dane Burrows

K8

* @ate 9-July-07

@Description:

* This routine evaluates the values of the B-spline basis
(or the derivatives) functions at given points. The grid
points and the order of the splines are specified by the
user, however, additional grid points outside of the
interval [xmin, xmax] are chosen by the program to provide
* a complete basis.

* @Usage:
output <name>=vBasis(x, grid, order, derivative, xLength, gridLength);
Input:
X : array of values for x on which the basis functions
are to be evaluated.
grid : the grid points in ascending order, all grid points must
be distinct. The interval on which the spline basis functions
are defined are given by:
* [grid[0], grid[N]].
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where N is the length of the array grid.
* order : order of the spline functions.
* derivative : order of derivative needed.
* xLength : an integer value showing the length of the array x.
* gridLength : an integer value showing the length of the array grid.
* Output:
v : an array of dimension order +1 by M, where M is the length of
the array x.
ndim : total number of basis elements, ndim=N+order-1.

* index : indices of the basis elements with non-zero values at a

* point x. index is a 2 by M array,

* index[0][k] -- lowest index of non-zero basis element at x[k].
* index[1][k] -- highest index of non-zero basis element at x[k].
* @Note:

*  Qutput is a structure defined in functions.h.

**************************************%k/

FehhhhhhRNNNNNNNN NN NN NS hdddddededededededededd

output out;

int i, j, k, factor, lcount=0, rcount=0, acount=0, counter=0, M=xLength,
N=gridLength, lgridLength=order, rgridLength=order;

double localg[2*order+1], trunc[2*order+2], dgrid, n, lgrid[lgridLength],
rgrid[rgridLength], agrid[lgridLength+gridLength+rgridLength];

out.ndim = N+order-1;
out.index=Array2D<int>(2, M);
out.v=Array2D<double>(order+1, M);

//Construct the augmented grid
//
dgrid=grid[1]-grid[0];
for(i=0;i<lgridLength;i++)
{
lgrid[i]=dgrid*i + grid[0]-order*dgrid;
lcount++;
}
dgrid=grid[N-1]-grid[N-2];
for(i=0;i<rgridLength;i++)
{
rgrid[i]=grid[N-1] +dgrid*(i+1);
rcount++;
}
for(i=0;i<lcount;i++)
{
agrid[acount]=1grid[i];
acount++;
}
for(i=0;i<gridLength;i++)
{
agrid[acount]=grid[i];
acount++;
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3

for(i=0;i<rcount;i++)

{
agrid[acount]=rgrid[i];
acount++;
}
//Main loop over points x
//
for(k=0; k<M; k++)
{
for(j=0; j<N-1; j++)
{
if((sign(x[k]-grid[j])*sign(grid[j+1]-x[k]))>=0)
break;
}
if(x[k]<grid[0])
{
j=0;
}
if(x[k]>grid[N-11)
{
j=N-2;
}
//Evaluate the values of the basis functions (or derivatives) at x(k)
//
// 1. Evaluate the values of the truncated polynomials
//
factor=1;
if(derivative >0)
{
for(i=0; i<=derivative-1;i++)
{
factor=factor*(order-i);
}
}
for(i=0;i<2*order+2;i++)
{
trunc[i]=0;
}
counter=0;
for(i=j;i<=j+2*order+2;i++)
{
localg[counter]=agrid[i];
counter++;
}
for(i=0;i<order*2+2;i++)
{

if(0<=(x[k]-agrid[j+i]))
trunc[i]=x[k]-agrid[j+i];
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double tmp=Ctrunc[ll+1]-trunc[11])/(localg[ll+1+1]-1ocalg[ll]);

if(order > derivative)
trunc[i]=factor*(pow(trunc[i], order-derivative));

else if(order == derivative)
trunc[i]=factor*sign(trunc[i]);
else
{
cout << "The spline function is not differentiable";
exit(-1);
}
}
//2. Compute the divided differences
//
int 1, 11;
for(1=0;1l<order+1;1++)
{
for(11=0; 1ll<2*order+2-1; 11++)
{

trunc[ll]=tmp;

}

3
}

//3. Store the value in the vector v
//
double itrunc[2][1];
itrunc[0][0]=j;
out.index[0] [k]=j;
itrunc[1] [0]=j+order;
out.index[1][k]=j+order;
for(i=0;i<order+1;i++)
{

out.v[i][k]=trunc[i];

}

return out;

}

A.1.2 VBNEUMANN

#include "spline.h"

output vbneumann(double x[], double grid[], int order, int derivative,

int xLength, int gridLength)

{

R e O R R R R R R R R R R R R R R R R R R R R R R R TR TR R o o o o i ik i o ok S S S i S S S Sk S S A R AR Ak L L L L R

/*****nkkkk

* @Author: Dane Burrows

*

* @ate 9-July-07

26

DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



*

@Description:

Evaluuates the value of the basis elements of spline functions of the
specified order on the given grid which satisfies the Neumann boundary

* conditions.
* @Usage:
* output <name>=vbneumann(x, grid, order, derivative, xLength,
gridLength);
* Input:
® X : array of values for x on which the basis functions
* are to be evaluated.
* grid : the grid points in ascending order, all grid points
* must be distinct. The interval on which the spline
* basis functions are defined are given by:
* [grid[0], grid[N]].
* where N is the length of the array grid.
* order : order of the spline functions.
* derivative : order of derivative needed.
xLength : an integer value showing the length of the array x.
* gridLength : an integer value showing the length of the array grid.
* Output:
* % : an array of dimension order +1 by M, where M is the
length of
* the array x.
* ndim : total number of basis elements, ndim=N+order-1.
* index : indices of the basis elements with non-zero values at a
® point x. index is a 2 by M array,
® index[0][k] -- lowest index of non-zero basis
* element at x[k].
* index[1][k] -- highest index of non-zero basis
* element at x[k].
* @Note:

FeddedededeNdedefede SN dedededdeded Ntk

Output is a structure defined in functions.h.

****%k******nk“k******n"“aunJ**************************/

Array2D<double> tau, v, u;
Array2D<int> index;

output tmp, out;

int M=xLength, N=gridLength, k, i, ndim;
double interval[2];

interval [0]=grid[0];
interval[1]=grid[N-1];
tmp = vBasis(interval, grid, order, 1, 2, gridLength);

tau=tmp.v;

tmp = vBasis(x, grid, order, derivative, xLength, gridLength);

ndim=tmp.ndim;
u=tmp.v;

27
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



v=u.copyQ;
index=tmp.index;

for(k=0; k<M; k++)
{
if(index[0] [k]!=1)
index[0] [k]=index[0] [k];
else
{
for(i=0;i<order;i++)
v[i] [k]=ul[i+1][k]-tau[i+1]1[0]*ul[0®][k]/tau[®][0];
}
if(index[1][k]!=ndim)
index[1] [k]=index[1] [k]-1;
else
{
for(i=0;i<order;i++)
v[i][k]=v[i][k]-tau[i] [1]*u[order+1] [k]/taul[order+1][1];
index[1] [k]=ndim-2;
}
ndim=ndim-2;
out.ndim=ndim;
out.v=v;
out.index=index;

return out;

A.1.3 LEAST SQUARES APPROXIMATION

#include "spline.h"

ArraylD<double> lsqapp(ArraylD<double> xdata, ArraylD<double> ydata,
ArraylD<double> wdata, ArraylD<double> xgrid, int order, double alphaO,
double alphal)

/ Fhhhhhhhhhhh RN N NN NN hhddddedededededddedededdedededededededededdh NN R NN hhhddt

@Author: Dane Burrows

* @ate 9-July-07

* @Description:

* Compute the least square approximation of the data set using a given
* set polynomial spline functions. The optimization functional is given
* b y

*  J(coef) = \sum"N_{J=1} wdata_j|L(t_j)-SC(t_j)|"2
\alpha_O\int " {t_max}_{t_min} |L[t]-S[t]]"2dt

* \alpha_1\int " {t_max}_{t_min} |L’[t]-S’[t]]|"2dt,

* where:
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*

=

: number of data points.

: liner spline interpolation of the data.
S : polynomial spline function.

\alpha_0 : where on the L_2 norm.
\alpha_1 : weight on the H_1 norm.

—

* @Usage:

*

ArraylD<double> <name>=vBasis(xdata, ydata, wdata, xgrid, order,

alpha®, alphal);
Input:

xdata : data values for the independent variable.

ydata : data values for the dependent variable.

wdata : weights on the data points.

xgrid : grid for the spline function.

order : order of the polynomial spline.

alpha® : weight on the L_2 norm.

alphal : weights on the H_1 norm.

Output:
coef : coefficients for the optimal spline function.

output start=vBasis(xdata, xdata, 1, 0, xdata.dim(), xdata.dim());
Array2D<double> Pl(start.ndim,start.ndim), P2, P3, W(wdata.dimQ),

wdata.dim()), Al, A2, A3, A, Q, intp_tmp;

ArraylD<double> ri1, r2, r3, r, coef, intp;
double xmin, xmax;
int i, j, k;

//Evaluate the pointwise term.
//
for(i=0;i<start.ndim;i++)
{

for(j=0;j<start.ndim; j++)

{

P1[j1[i]1=0;

}

}

for(k=0; k<start.ndim; k++)
{

for(j=start.index[0][k]; j<=start.index[1][k]; j++)

{

P1[k][j] = start.v[j-start.index[0][k]][k];

}
}
intp=inverse(P1)*ydata;
output filter=vBasis(xdata, xgrid, order, 0, xdata.dim(), xgrid.dimQ));
Q=Array2D<double> (start.ndim, filter.ndim);
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for(int k=0;k<start.ndim; k++)
{
for(int j=filter.index[0][k]; j<=filter.index[1][k];j++)
{
Q[k][jl=filter.v[j-filter.index[0][k]][k];
}
}
for(i=0;i<wdata.dim(Q);i++)
{
for(j=0;j<wdata.dim(Q;j++)
{
W[j1[11=0;
}
}
for(i=0;i<wdata.dim(Q);i++)
{
W[il[i]=wdatal[i];
}
for(i=0;i<intp_tmp.diml();i++)
{
for(int k=0; k<intp_tmp.dim2(); k++)
{
intp[i]+=intp_tmp[i] [k]*ydatal[k];
}
}
Al=Array2D<double> (filter.ndim, filter.ndim);
rl=transpose(Q) *W*ydata;
Al=transpose(Q) *W*Q;

//Evaluate the L_2 term
//
xmin=xdata[0];
for(i=1;i<xdata.dim(Q);i++)
{
if(xdata[i]<xmin)
xmin=xdata[i];
}
for(i=0;i<xgrid.dimQ);i++)
{
if(xdata[i]<xmin)
xmin=xgrid[i];
}
xmax=xdata[0];
for(i=1;i<xdata.dim(Q);i++)
{
if(xdata[i]>xmax)
xmax=xdata[i];
}
for(i=0;i<xgrid.dimQ);i++)
{

if(xdata[i]>xmax)
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xmax=xgrid[i];

}

A=Array2D<double> (filter.ndim, filter.ndim);

P2=Array2D<double> (xgrid.dim(), xdata.dim());

A2=Array2D<double> (filter.ndim, filter.ndim);

A3=Array2D<double> (filter.ndim, filter.ndim);

P3=Array2D<double> (xgrid.dim(), xdata.dim());

P2=innprd(xgrid, order, 0, xdata, 1, 0, xmin, xmax, xgrid.dim(),
xdata.dim());

r2=P2*intp;

A2=innprd(xgrid, order, 0, xgrid, order, O, xmin, xmax, xgrid.dim(),

xgrid.

dim(Q));

//Evaluate the H_1 term

/7

P3=innprd(xgrid, order, 1, xdata, 1, 1, xmin, xmax, xgrid.dim(), xdata.dim(Q));

r3=P3*intp;

A3=innprd(xgrid, order, 1, xgrid, order, 1, xmin, xmax, xgrid.dim(),
xgrid.dim(Q));

//Solve for the optimal coefficients

//

r=rl+alpha®*r2+alphal*r3;
A=Al+alpha®*A2+alphal*A3;
coef = inverse(A)*r;

return coef;

A.14 VSPLINE

#include "spline.h"

ArraylD<double> vspline(ArraylD<double> x, ArraylD<double> grid,
int order, int derivative, ArraylD<double> coef)

{

/ R e R R R R R R R R R R R R o o i ol o o i o e o e R R L R R R R R R TS

* @Author: Dane Burrows

*

*

*

&

*

*

@ate 9-

July-07

* @Description:

Evaluate a given polynomial spline function.

@Usage:

Array2D<double> <name>=vspline(x, grid, order, derivative, coef);

Input:

x : values of the independant variable.
* xgrid :

grid on which the splines are defined.

31
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



order : order of spline.
dev : order of derivative.
* coef : coefficients with respect to the standard basis.

*  Qutput:
v : value of the spline.

R O R R R R R R R R R R R R o o T o e R R R R R

ArraylD<double> v(x.dim(Q));
output tmp;
int i, j;

tmp=vBasis(x, grid, order, derivative, x.dim(), grid.dim(Q));

if(tmp.ndim!=coef.dim())
{
cout << "The dimension of the coefficient vector is wrong. "
<< tmp.ndim << " " << coef.dim() << endl;
exit(-1);
}

//Calculate the spline values.
éér(i=®; i<x.dimQ); i++)
! v[i]=0;
for(j=tmp.index[0][i]; j<=tmp.index[1][i]; j++)
{ v[il=v[i]+coef[jl*tmp.v[j-tmp.index[0][i]]1[i];
) }

return v;

A.1.5 2D-SLICE COEFFICIENT

#include "spline.h"

Array2D<double> slice_coef(ArraylD<double> z, ArraylD<double> nr,
Array2D<double> r, Array2D<double> nval, ArraylD<double> zgrid,
ArraylD<double> nrgrid, Array2D<double> rgrid, int order, double alpha®,
double alphal)

{

/******************************************************************************m

* @Author: Dane Burrows
*

* @ate 9-July-07
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*

*

@Description:

Evaluate the coeficient for each slice at p_{i} to approximate the data set

r(i,l:nr[i]) and nval(i,l:nr[i]). This approximation is done using one

dimensional approximation.

* @Usage:
Array2D<double> <name>=slice_coef(z, nr, r, nval, zgrid, nrgrid, rgrid,

*

*

K8

order, alpha®, alphal);

Input:

zgrid : grid points in z.

nrgrid : number of grid points in r at each slice.
rgrid : grid points in r.

order : order of the spline requested.

z : z values for data.

nr : number of r data points at each slice.

r ! r measurements.

nval : intensity measurements.

alpha® : weight for data approximation.
alphal : weight for derivative approximation.

Output:

* coefz : lenz by (nt[i]+order-1) 2 dimensional array containing

*

FhhhhhhhNNh RN NN NN R hddddddededdededededededededededededededddehhhhh NN RN NN R dddddddddd

the approximation coefficients at each slice.

int lenz=z.dim(Q), i, j;
Array2D<double> coefz(lenz, (int)nr[0]+order-1);

for(i=0; i<lenz; i++)

{

ArraylD<double> tmp, tmpr, tmpnval, ones, tmprgrid;
tmpr=ArraylD<double> ((int)nr[i]);
tmpnval=ArraylD<double> ((int)nr[i]);
ones=ArraylD<double> ((int)nr[i]);
tmprgrid=ArraylD<double> ((int)nrgrid[i]);

for(j=0; j<nr[i]; j++)
{
tmpr[j1=r[il1[]j];
tmpnval[jl=nval[il[j];
ones[j]=1;
}
for(j=0; j<nrgrid[i]; j++)
{
tmprgrid[jl=rgrid[i][j];
}
tmp=1sqapp (tmpr, tmpnval, ones, tmprgrid, order, alpha®, alphal);
for(j=0; j<tmp.dim(Q); j++)
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3

{
}

coefz[i][j]=tmp[j];

return coefz;

}

A.1.6 INNER PRODUCT

#include "spline.h"

Array2D<double> innprd(double grdil[], int ordl, int devl, double grd2[],
int ord2, int dev2, double xmin, double xmax, int grdlLength, int grd2Length)

@Author: Dane Burrows

@Date 9-July-07

* @escription:

Computes the matrix of the inner product of two families of polynomial

spline basis functions. If {B_K}, k=1, ...., N and {C_j}, j=1, ..., M,

then the matrix is given by:
A_{k, j}=<B_k, C_j>.

@Usage:

Input:

Array2D <name>=innprd(grdl, ordl, devl, grd2, ord2, dev2, xmin, xmax);
grdl : grid of points of the first group of polynomial spline
functions.

ordl : the order of the first group of spline functions.
devl : order of the derivatives of the first group of
spline functions.

grd2 : grid points of the second group of polynomial spline
functions.

ord2 : the order of the second group of spline functions.

dev2 : order of the derivatives of the second group of
spline functions.

xmin : lower bound of the interval of integration.

xmax : upper bound of the interval of integration.

Output:

A : the matrix of the inner product.

@Note:
Uses the wt function to determine the weights (needs to be changed

if values other than 1 are desired).

Fhhhhhhhhhhh R RN h R RN hhhddddddedededdddededddededededededededdhh Nk
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int z=0, nint=5, i, j, k=0, n=grdllLength, lgridLength=ordl, acount=0,

rgridLength=ordl, N1, N2, icount=0;

double weight[5], x[5], dgrd=grd1[1]-grd1[®], lgrd[lgridLength],
rgrd[rgridLength],

agrdl[lgridLength+grdlLength+rgridLength], grid1[1], grid2[1], u;

double alpha[5], y[5];

Array2D<double> A;

output fltrl, fltr2;

weight[0]=0.2369268851;
weight[1]=0.4786286705;
weight[2]=0.5688888889;
weight[3]=weight[1];
weight[4]=weight[0];
x[0]=-0.9061798459;
x[1]=-0.5384693101;

x[2]=0;
x[3]=-x[1];
x[4]=-x[0];

//construct the combined grid

//

for(i=0;i<lgridLength;i++)
{
lgrd[i]=dgrd*i + grdl1[0]-ordl*dgrd;
}
dgrd=grdl[n-1] - grdl[n-2];
for(i=0;i<rgridLength;i++)
{
rgrd[i]=grdl[n-1] + dgrd*(i+1);
}
for(i=0;i<ordl;i++)
{
agrdlf[acount]=1grd[i];
acount++;
}
for(i=0;i<grdlLength;i++)
{
agrdl[acount]=grd1[i];
acount++;
}
for(i=0;i<ordl;i++)
{
agrdlf[acount]=rgrd[i];
acount++;
}
lgridLength=ord2;
rgridLength=ord2;
n=grd2Length;
acount=0;
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dgrd=grd2[1]-grd2[0];
for(i=0;i<lgridLength;i++)
{
lgrd[i]=dgrd*i + grd2[0]-ord2*dgrd;
}
double agrd2[lgridLength+grd2Length+rgridLength];
dgrd=grd2[n-1]-grd2[n-2];
for(i=0;i<rgridLength;i++)

{
rgrd[i]=grd2[n-1] +dgrd*(i+1);
}
for(i=0;i<ord2;i++)
{
agrd2[acount]=1grd[i];
acount++;
}
for(i=0;i<grd2Length;i++)
{
agrd2[acount]=grd2[i];
acount++;
}
for(i=0;i<ord2;i++)
{
agrd2[acount]=rgrd[i];
acount++;
}

double cgrid[ordl*2+ord2*2+grdlLength+grd2Length];

int ccount=0;

for(i=0;i<ordl1*2+grdlLength;i++)
cgrid[ccount++]=agrdl[i];

for(i=0;i<ord2*2+grd2Length;i++)
cgrid[ccount++]=agrd2[i];

int elements= sizeof(cgrid)/sizeof(double);

sort(cgrid, elements+cgrid);

double igrd[2+ccount];
igrd[icount++]=xmin;
double cx=cgrid[0];
i=0;
while(cx!=cgrid[ccount-1])
{
if(cx >= xmax)
break;
if(igrd[k]<cx)
{
igrd[icount++]=cx;
k++;
}
cx=cgrid[i++];
}

igrd[icount++]=xmax;
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gridl1[0]=grd1[0];
grid2[0]=grd2[0];
fltrl=vBasis(gridl, grdl, ordl, devl, 1, grdllLength);
fltr2=vBasis(grid2, grd2, ord2, dev2, 1, grd2Length);

//Calculate the inner product matrix
//

N1=fltrl.ndim;

N2=fltr2.ndim;
A=Array2D<double>(N1,N2);
for(i=0;i<fltr2.ndim;i++)

{
for(j=0; j<fltrl.ndim; j++)
{
A[j1[1]1=0;
3
}
for(z=0;z<icount-1;z++)
{
double a=igrd[z];
double b=igrd[z+1];
for(i=0;i<5;i++)
y[il=(b+a)/2+(b-a)*x[i]/2;
fltrl=vBasis(y, grdl, ordl, devl, 5, grdlLength);
fltr2=vBasis(y, grd2, ord2, dev2, 5, grd2Length);
wt(y, 5, alpha);
for(i=0;i<nint;i++)
{
for(k=fltrl.index[®][i]; k<=fltrl.index[1]1[i]; k++)
{
for(j=£fltr2.index[0][i];j<=fltr2.index[1][i];j++)
{
u=fltrl.v[k-fltrl.index[®][i]][i]*fltr2.v[j-fltr2.index[0][i]1][i];
A[k][j1=ATk][jI+(b-a)*u*weight[i]*alpha[i]l/2;
}
}
3
}
return A;
}

A.1.7 WEIGHTS

#include "spline.h"

void wt(double y[], int length, double alphal])
{

/ R R R R R R R R ok ko e o e o e o o e R o o S A R Rk L L R R Lk L

* @Author: Dane Burrows
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* @ate 9-July-07

* @Description:
* Returns a weight for calculating the inner product.

* @Usage:
* wt(y, length, alpha);

Input:
y : array of dimension: length which can be used for
evaluating the weight.
* length : length of the array: y.
* alpha : empty array to be filled with the result.

o

******************************************************************************/

for(int i=0;i<5;i++)
alpha[i]=1;

A.1.8 PLOT BASIS

#include "spline.h"

Array2D<double> plotBasis(Array2D<double> v, Array2D<int> index, double x[],
int order, int vLength, int ndim)

/*****************************************************************************

* @Name: Dane Burrows
*

* @ate 9-July-07

K3

*

@Description:
This routine evaluates the values of the B-spline basis.

* @Usage:

* output <name>=vBasis(x, grid, order, derivative, xLength, gridLength);
* Input:

* \% : an array of dimension order +1 by M, where M is the
* length

® of the array x

* index : indices of the basis elements with non-zero values
* at a point x. index is a 2 by M array,

* index[0][k] -- lowest index of non-zero basis

# element at x[k].

* index[1][k] -- highest index of non-zero basis

element at x[k].
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*

X

order

vLength :

ndim

Output:
u

: array of values for x on which the basis functions
are to be evaluated.
: order of the spline functions.
length of the array v.
: total number of basis elements, ndim=N+order-1.

: an array that can be graphed to show the basis
functions.

****************************************************************************/

}

int i, j, k;

Array2D<double> u(ndim, vLength);
for(i=0;i<vLength;i++)

{

for(j=0;j<ndim; j++)

{

if(index[0] [i]<=j&&j<=index[1][i])

{

uljlli]=v[j-index[0][i]][i];

}

else

uljl1[i]=0;

return u;

A.19 SIGN

#include "spline.h"

double sign(double a)

{

*
*
*
-
*

*

&

*

/***************************m****************************%****m**************

* @Author: Dane Burrows

@Date 9-July-07

* @Description:

Checks the sign of a number and returns the sign as either 1, -1, or 0.

@Usage:

output <name>=vBasis(x, grid, order, derivative, xLength, gridLength);

Input:
a
Output:
X

: A double value to have its sign evaluated.

: A double value of either 1.0 (positive) -1.0

39
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



(negative) or 0.0.

ek

x=-1;
if(a>0)
x=1;

return Xx;

A.1.10 SURF VALUE

#include "spline.h"

Array2D<double> surf_value(ArraylD<double> x, ArraylD<double> vy,
ArraylD<double> zgrid, ArraylD<double> nrgrid, Array2D<double> rgrid,
int rorder, int zdev, int rdev, Array2D<double> coefz)

{

/7': *
* @Author: Dane Burrows

*

* @Date 9-July-07

*

*

@Description:
Evaluate the approximation for a finite number of slices at given points
* zgrid[i] using interpolation in z.

* @Usage:

* Array2D <name>=surf_val(x, y, zgrid, nrgrid, rgrid, rorder, zdev, rdev,
coefz);

* Input:

X : z values where surface is requested.

y : r values where surface is requested.

zgrid : grid points in z.

nrgrid : number of r points at each z grid.

rgrid : r grid points.

* order : order of spline.

dev : order of derivative.

coefz : coefficents with respect to the standard basis at each
z values in zgrid[i].

*  Qutput:
® v : value of the z interpolating slice function.
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int i, j, k, lenx, n;
double weightl, weight2;
Array2D<double> v;

n=zgrid.dim(Q);
lenx=x.dim()-1;

for(i=0; i<lenx; i++)

{

ArraylD<double> tmp;
for(j=0;j<n-1; j++)

{

//Interpolate between the first two slices

//

ArraylD<double> tmprgridl((int)nrgrid[j]),

tmprgrid2 ((Ant)nrgrid[j+1]),
tmp_gridl((int)nrgrid[j]), tmp_grid2((int)nrgrid[j+1]),
tmp_grid_z((int)nrgrid[j]), tmp_grid_r((int)nrgrid[j]),
tmp_coefl(coefz.dim2()), tmp_coef2(coefz.dim2()),
tmp_coef_z(coefz.dim2()), tmp_coef_r(coefz.dim2());

for(k=0;k<nrgrid[j];k++)

{

3

tmprgridl[k]=rgrid[j][k];
tmprgrid2 [k]=rgrid[j+1][k];

if((x[i] >= zgrid[j]D&&(x[i]l<zgrid[j+1]1))

{

weightl=(x[i]-zgrid[j])/(zgrid[j+1]-zgrid[j]);
tmp_gridl=tmprgridl;
tmp_grid2=tmprgrid2;
if(zdev==1)
{
weight2=1/(x[i]*(log(zgrid[j+1]1)-1log(zgrid[j1)));
for (k=0;k<tmp_gridl.dimQ) ;k++)
tmp_grid_z[k]=(tmp_grid2[k]-tmp_gridl[k])*weight2;
}
for (k=0;k<tmp_gridl.dimQ) ; k++)
{
tmp_grid_r[k]=tmp_gridl[k]+(tmp_grid2[k]-tmp_gridl[k])*weightl;
}
for(k=0;k<coefz.dim2() ;k++)
{
tmp_coefl[k]=coefz[j][k];
tmp_coef2[k]=coefz[j+1][k];
}
if(zdev==1)
{
weight2=1/(x[i]*(log(zgrid[j+1]1)-log(zgrid[j1)));
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for(k=0;k<tmp_gridl.dim(Q) ;k++)
tmp_coef_z[k]=(tmp_coef2[k]-tmp_coefl[k])*weight2;

}
for (k=0;k<tmp_coefl.dim() ; k++)
{
tmp_coef_r[k] = tmp_coefl[k]+(tmp_coef2[k]-tmp_coefl[k])*weightl;
}
tmp=vspline(y, tmp_grid_r, rorder, zdev, tmp_coef_r);
}
}
// Calculate the surface value at points requested
//
if(i==0)

v=Array2D<double> (tmp.dim(), lenx);
for(j=0;j<tmp.dimQ); j++)
{
v[jl[il=tmp[j];
}
}

return v;

}

A.2 Anexample in C
A.2.1 VBASIS

#include "spline.h"

int main()
{
int order, derivative;
int xlength, i, gridLength, j;
gridLength=11;
xlength=101;
ArraylD<double> grid(gridLength), x(xlength);
Array2D<double> plots;
ofstream outputl("vBasis.out");

for(i=0;i<gridLength;i++)
grid[i]=i;

for(i=0; i<xlength; i++)
x[i]=1/10.0;

order=3;
derivative=0;

output vbout=vBasis(x, grid, order, derivative, xlength, gridLength);
plots=plotBasis(vbout.v, vbout.index, x, order, vbout.v.dim2(), vbout.ndim);

42
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



for(j=0; j<vbout.ndim; j++)

{
for(i=0;i<vbout.
{

outputl <<x[i]

}

outputl <<endl;

}

return 0;

}

v.dim2 () ;i++)

non

<< << plots[j][i]l<<endl;

A.2.2 VBNEUMANN

#include "spline.h"

int main(Q)

ArraylD<double> grid(gridLength), x(xlength);

output vbout=vbneumann(x, grid, order, derivative, xlength, gridLength);
Array2D<double> plots = plotBasis(vbout.v, vbout.index, x, order,

v.dim2(Q);j++)

non

<< plots[i][j] << endl;

{
int order, derivative;
int xlength, i, gridLength, j;
gridLength=11;
xlength=101;
for(i=0;i<gridLength;i++)
grid[i]=i;
for(i=0; i<xlength; i++)
x[i]=1/10.0;
ofstream outputl("vbneumann.out");
order=3;
derivative=0;
vbout.v.dim2(), vbout.ndim);
for(i=0;i<vbout.ndim;i++)
{
for(j=0; j<vbout.
{
outputl << x[j] <<
}
outputl << endl;
}
return 0;
}

A.2.3 VSPLINE

#include "spline.h"
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int mainQ)
{

int order, derivative;

int xlength, i, xdatalength, gridLength, zLength=11, yLength=101,
alLength=21, j;

xdatalLength=11;

gridLength=11;

xlength=101;

ofstream outputl("ydata.out");

ofstream output2("vspline.out");

ArraylD<double> xdata(xdatalLength), grid(gridLength), ydata(xdatalLength),
x(xlength), vspln;

for(i=0;i<xdatalength;i++)

xdata[i]l=i;
for(i=0;i<gridLength;i++)
grid[i]=i;
for(i=0; i<xdatalLength; i++)

{
ydata[i]=exp(-xdatal[i]);

outputl << xdata[i] << " " << ydata[i] << endl;

}

for(i=0; i<xlength; i++)
x[1]=1/10.0;

order=3;

derivative=0;

ArraylD<double> approx;

approx=lsqgapp(xdata, ydata, ydata, grid, order, 0.1, 0.01);
vspln=vspline(x, grid, order, derivative, approx);

for(int i=0; i < vspln.dim(Q); i ++)
output2 << i/((double)xlength-1)*10.0 << " " << vspln[i]<< endl;

return 0;

A.2.4 LEAST SQUARES APPROXIMATION

#include "spline.h"

int mainQ)
{
int order;
int xlength, i, j, xdatalength, gridLength;
xdatalLength=11;
gridLength=11;
ArraylD<double> xdata(xdatalLength), grid(gridLength), ydata(xdatalLength);
for(i=0;i<xdatalength;i++)
xdata[i]=i;
for(i=0;i<gridLength;i++)
grid[i]=i;
for(i=0; i<xdatalLength; i++)
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ydata[i]=exp(-xdata[i]);
ofstream outputl("lsgapp.out™);
order=3;
ArraylD<double> approx;
approx=lsqapp(xdata, ydata, ydata, grid, order, 0.1, 0.01);

for(i=0;i<approx.dim();i++)
{
outputl << approx[i] << endl;

}

return 0;

A.2.5 SLICE COEFFICIENTS

#include "spline.h"

int mainQ)

{

int order, derivative;
int i, zLength=11, alength=21, j;

order=3;
derivative=0;
ArraylD<double> z(zLength), nr(zLength);
for(i=0; i<zLength; i++)

nr[i]=alength;
Array2D<double> r(zLength, alLength);
Array2D<double> nval(zLength, alength);
ofstream outputl('slice.out");

for(i=0; i<zLength; i++)

z[i]=1;

for(i=0; i<zLength; i++)

{
for(int j=0; j<nr[0]; j++)
{

r[i][j1=-10+j;
nval[i][j]1=-0.001%*exp(-r[i][j1*r[i]1[j]1) *exp(-z[i])+1.35;
}
}

Array2D<double> slice;
slice=slice_coef(z, nr, r, nval, z, nr, r, order, .1, .01);
for(i=0;i<slice.dim2 () ;i++)

{
for(j=0;j<slice.diml();j++)
{
outputl << j << " " << 1 << " " << slice[j][i] << endl;
}
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outputl << endl;

}

return 0;

}

A.2.6 SURF VALUE

#include "spline.h"

int main()
{
int order, derivative;
int xlength, i, gridLength, zLength=11, yLength=101, alength=21, j;
xlength=101;
ArraylD<double> x(xlength), y(yLength);
for(i=0; i<xlength; i++)
x[1i]=1/10.0;
for(i=0; i<yLength; i++)
y[i]=-10+i/5.0;
ofstream outputl("surf.out");

order=3;
derivative=0;
double temp[1];
ArraylD<double> z(zLength), nr(zLength);
for(i=0; i<zLength; i++)
nr[i]=alength;
Array2D<double> r(zLength, alLength);
Array2D<double> nval(zLength, alength);

for(i=0; i<zLength; i++)
z[i]=1i;
for(i=0; i<zLength; i++)
{
for(int j=0; j<nr[0]; j++)
{
r[i][j]1=-10+j;
nval[i][j]1=-0.001*exp(-r[i]1[jl1*r[i][j]1)*exp(-z[i])+1.35;
}
}

Array2D<double> slice, surf;

slice=slice_coef(z, nr, r, nval, z, nr, r, order, .1, .01);
surf=surf_value(x, y, z, nr, r, order, 0, 0, slice);
for(i=0;i<surf.dim2 () ;i++)

{
for(j=0;j<surf.diml1;j++)
{
outputl << j << " " << 1 << " " << surf[j][i] << endl;
3
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outputl << endl;

}

return 0;

}

A.3 MATLAB Code
A3.1 VBASIS

function [v,ndim,index]=vbasis(x,grid,order,derivative)

% Description: This routine evaluates the values of the B-spline basis

% (or the derivatives) functions at given points. The grid points and

% the order of the splines are specified by user, however, additional

% grid points outside of the interval [xmin, xmax] are choosen by

% the program to provide a complete basis.

% Usage:

% [v,ndim,index]=vbasis(x,grid,order,derivative);

% Input:

% X : row vector of values for x on which the basis functions
% are to be evaluated.

% grid : the grid points in ascending order, all grid points

% must be distinct. The interval on which the spline

% basis functions are defined are given by:

% [grid(1),grid(N)]

% where N is the length of the vector grid.

% order : order of the spline functions.

% derivative : order of derivative needed.

% derivative=0, value of the function is requested.

% Output:

% % : an array of dimension order+1 by M, where M is the

% length of vector x.

% ndim : total number of basis elements, ndim = N+order-1.

% index : the indices of basis elements with non-zero values

% at a point x. index is a 2 by M matrix,

% index(1,k) -- lowest index of non-zero basis element
% at x(k).

% index(2,k) -- highest index of non-zero basis element
% at x(k).

N=length(grid);
M=length(x);
ndim=N+order-1;

% Construct the augmented grid.

dgrid=grid(2)-grid(1);
lgrid=grid(1l)-order*dgrid:dgrid:grid(1)-dgrid;
dgrid=grid(N)-grid(N-1);
rgrid=grid(N)+dgrid:dgrid:grid(N)+order*dgrid;
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agrid=[lgrid, grid, rgrid];
% Main loop over points x.

v=[1;
index=[];
for k=1:M

% Determine the interval [grid(j), grid(j+1)] in which x(k) belongs.
%
for j=1:N-1
if sign(x(k)-grid(j))*sign(grid(j+1)-xk)) >= 0
break;
end;
end;
if x(k) < grid(1)
j=1;
end;
if xk) > grid(W)
j=N-1;
end;

% Evaluate the values of the basis functions (or derivatives) at x(k).
% 1. Evaluate the values of the truncated polynomials.

factor=1;
if derivative > 0
for i=0:derivative-1
factor=factor*(order-i);
end;
end;
trunc = zeros(l,2*order+2);
localg = agrid(j:j+2*order+1);
for i=1:2*order+2
trunc (i)=max ([ (x(k)-agrid(j+i-1)),0]1);
if order > derivative
trunc(i)=factor*(trunc(i) "~ (order-derivative));
elseif order == derivative
trunc(i)=factor*sign(trunc(i));
else
disp(’The spline function is not differentiable’);
return;
end;
end;
%
% 2. Compute the divided differences.
%
for 1=1:order+1
for 11=1:2%order+2-1
trunc(11l)=Ctrunc(11+1)-trunc(11))/(localg(11+1)-localg(1l));
end;
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end;

% 3. Store the value in the vector v.
itrunc=[j; j+order];
index = [index itrunc];
trunc = trunc(l:order+1);

v = [v trunc’];
end;

A.3.2 VBNEUMANN

function [v,ndim,index]=vbneumann(x,grid,order,derivative)

% Description: evaluates the value of basis elements of spline functions

% of the specified order on the given grid which satisfies the

% Neumann boundary conditions.

% Usage:

% [v,ndim, index]=vbneumann(x,grid,order,derivative);

% Input:

% X : row vector of values for x on which the basis functions
% are to be evaluated.

% grid : the grid points in ascending order, all grid points

% must be distinct. The interval on which the spline

% basis functions are defined are given by:

% [grid(1),grid(N)]

% where N is the length of the vector grid.

% order : order of the spline functions.

% derivative : order of derivative needed.

% derivative=0, value of the function is requested.

% Output:

% v : an array of dimension order+1 by M, where M is the

% length of vector x.

% ndim : total number of basis elements, ndim = N+order-3.

% index : the indices of basis elements with non-zero values

% at a point x. index is a 2 by M matrix,

% index(1,k) -- lowest index of non-zero basis element
% at x(k).

% index(2,k) -- highest index of non-zero basis element
% at x(k).

N = length(grid);

interval = [grid(1),grid(N)];

[tau,ndim,index] = vbasis(interval,grid,order,1);
[u,ndim,index] = vbasis(x,grid,order,derivative);
M = length(x);

v=u;

R

% Impose the boundary conditions.
%
for k=1:M
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if index(1,k) =1
index(1,k) = index(1l,k)-1;
else
for i=1:order
v(i,k) = u(i+l,k)-tau(i+1,1)*u(l,k)/tau(1,1);
end;
end;
if index(2,k) "= ndim
index(2,k) = index(2,k)-1;
else
for i=1:order
v(i,k) = v(i,k)-tau(i,2)*u(order+1,k)/tau(order+1,2);
end;
index(2,k) = ndim-2;
end;
end;
ndim = ndim-2;
return;

A.3.3 LEAST SQUARES APPROXIMATION

function [coef]=1sqapp(xdata,ydata,wdata,...
xgrid,order,filter,alpha0,alphal)

% Description: Compute the least square approximation of the data set
% using a given set polynomial spline functions. The optimization
%  functional is given by

% J(coef) = \sum"N_{j=1} wdata_jIL(t_j)-SCt_j)|"2

% \alpha_O0\int" " {t_max}_{t_min} |L(t)-S(t)|"2dt

% \alpha_I\int " {t_max}_{t_min} |L’(t)-S’(t)|"2dt,
%  where:

% N : number of data points.

% L : linear spline interpolation of the data.
% S : polynomial spline function.

% \alpha_® : weight on the L_2 norm.

% \alpha_1 : weight on the H_1 norm.

% Usage:

% [coef]=1sqapp(xdata,ydata,wdata,xgrid,order,filter,alpha®,alphal)
% where:

% xdata : data values for the independent variable.

% ydata : data values for the dependent variable.

% wdata : weights on the data points.

% xgrid : grid for the spline function.

% order : order of the polynomial spline.

% filter : routine for evaluation of the spline functions.
% alpha0 : weight on the L_2 norm.

% alphal : weight on the H_1 norm.

% coef : coefficients for the optimal spline function.

[u,ndata,index]=vbasis(xdata,xdata,1,0);
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% Evaluate the pointwise term.
%
P1 = zeros(ndata,ndata);
for k=1:ndata
for j=index(1,k):index(2,k)
P1(k,j) = u(j-index(1,k)+1,k);
end;
end;
intp = inv(P1l)*ydata’;
[u,ndim, index]=feval (filter,xdata,xgrid,order,0);
Q = zeros(ndata,ndim);
for k=1:ndata
for j=index(1,k):index(2,k)
Qk,j) = u(j-index(1,k)+1,k);
end;
end;
W = diag(wdata,®);
rl = Q’*W*ydata’;
Al = Q' *W*Q;

% Evaluate the L_2 term.

xmin = min([xdata xgrid]);

xmax = max([xdata xgrid]);

[P2] = innprd(xgrid,order,0,filter,xdata,1,0,’vbasis’,...
unif’,xmin,xmax) ;

r2 = P2*intp;

[A2] = innprd(xgrid,order,®,filter,xgrid,order,...
0,filter,’unif’,xmin,xmax);

% Evaluate the H_1 term.
%
[P3] = innprd(xgrid,order,1,filter,xdata,1,1,’vbasis’,...
'unif’,xmin, xmax) ;
r3 = P3*intp;
[A3] = innprd(xgrid,order,1,filter,xgrid,order,...
1,filter,’unif’,xmin,xmax) ;

% Solve for the optimal coefficients.

r = rl+alpha®@*r2+alphal*r3;
A = Al+alpha®*A2+alphal®A3;
coef = (inv(A)*r)’;

return;

A.3.4 VSPLINE

function [v]=vspline(x,xgrid,order,dev,filter,coef)

%

% Description: Evaluate a given polynomial spline function.
% Usage:
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[v]=vspline(x,xgrid,order,dev, filter,coef);
where:

X : values of the independent variable.

xgrid : grid on which the splines are defined.

order : order of spline.

dev : order of derivative.

filter : filter used to impose boundary conditions.

coef : coefficients with respect to the standard basis.
\" : value of the spline.

[u,ndim,index]=feval (filter,x,xgrid,order,dev);
if ndim "= length(coef)

disp(’The dimension of the coefficient vector is wrong.’);

return;
end;
v = zeros(size(x));

Calculate the spline values.

for k=1:1length(x)
for j=index(1l,k):index(2,k)
v(k) = v(k)+coef(j)*u(j-index(1l,k)+1,k);
end;
end;
return;

A.3.5 2D-SLICE COEFFICIENT

function [coefp]=slice_coef(p,nt,t,ival,pgrid,ntgrid,tgrid,order,filter,...

alpha0,alphal)

Description: Evaluate coefficient for each slice at p_{i} to approximate
the data set t(i,l:nt(i)) and ival(i,1l:nt(i)). This approximation

is done using one dimensional approximation.
Usage:

[coef] = slice_coef(pgrid,ntgrid,tgrid,order,filter,p,nt,t,ival,...

alpha0,alphal);

Inputs:
pgrid : grid points in z
ntgrid : number of grid points in r
tgrid : grid points in r
order : order of the spline requested.
filter : filter requested.
p : z values for data.
nt : number r data points at each slice.
t . r measurements.
ival : refractive index measurements
alpha® : weight for data approximation.
alphal : weight for derivative approximation.
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% Outputs:
% coefp

: lenp by (nt(i)+order-1) matrix containing the

approximation coefficients at each slice.

lenp = max(size(p));

coefp = [];
for i=1:1lenp

[tmp]=1sqapp(t(i,1:nt(i)),ival(i,l:nt(i)),ones(1l,nt(i)),...

tgrid(i,l:ntgrid(i)),order,filter,alpha®,alphal);

coefp = [coefp;tmp];

end;
return;

A.3.6 INNER PRODUCT

function [A]=innprd(grdl,ordl,devl, fltrl,grd2,ord2,dev2,fltr2,wt,xmin,xmax)

%

% Description: Compute the matrix of the inner product of two families of

% polynomial spline basis functions. If {B_k}, k=1,...,N and {C_j},
% j=1,...,M, then the matrix is given by
% A_{k,j} = <B_k, C_j>.
% Usage:
% [A]l=innprd(grdl,ordl,devl,’ fltrl’,grd2,ord2,dev2,’ fltr2’ ,wt,xmin,xmax) ;
% Input:
% grdl : grid points of the first group of polynomial spline
% functions.
% ordl : the order of the first group of spline functions.
% devl : order of the derivatives of the first group of
% spline functions.
% fltrl : filter that modifies the basis elements in order
% to satisfy the boundary condition.
% grd2 : grid points of the second group of polynomial spline
% functions.
% ord2 : the order of the second group of spline functions.
% dev2 : order of the derivatives of the second group of
% spline functions.
% fltr2 : filter that modifies the basis elements in order
% to satisfy the boundary condition.
% wt : weight function in the inner product.
% xmin : lower bound of the interval of integration.
% Xmax : upper bound of the interval of integration.
% Output:
% A : the matrix of inner product.
%
weight [0.2369268851, 0.4786286705, 0.5688888889];
weight [weight weight(2) weight(1)];

X = [-0.9061798459, -0.5384693101, 0];
x = [x -x(2) -x(1D];

%

% Construct the combined grid.
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nint = 5;

n = length(grdl);

dgrd=grd1(2)-grd1(1);
lgrd=grd1(1l)-ordl*dgrd:dgrd:grd1(1l)-dgrd;
dgrd=grdl(n)-grdli(n-1);
rgrd=grdl(n)+dgrd:dgrd:grdl(n)+ordl*dgrd;
agrdl=[lgrd, grdl, rgrd];

n = length(grd2);

dgrd=grd2(2)-grd2(1);
lgrd=grd2(1)-ord2*dgrd:dgrd:grd2(1)-dgrd;
dgrd=grd2(n)-grd2(n-1);

rgrd=grd2 (n)+dgrd:dgrd:grd2 (n)+ord2*dgrd;
agrd2=[lgrd, grd2, rgrd];

cgrd = [agrdl agrd2];

cgrd sort(cgrd);

%
% Choose the maximum and the minimum grid point.
%
igrd = xmin;
k = 1;
for cx = cgrd
if cx >= xmax
break;
end;
if igrd(k) < cx
igrd = [igrd cx];
k = k+1;
end;
end;
igrd = [igrd xmax];
[vl,N1,index1] = feval(fltrl,grdi(1l),grdl,ordl,devl);
[v2,N2,index2] = feval(fltr2,grd2(1),grd2,ord2,dev2);
%
% Calculate the inner product matrix.

A = zeros(N1,N2);
for k= 1:length(igrd)-1
igrd(k);
b = igrd(k+1);
y = (b+a)/2+(b-a)*x/2;
[vl,ndim,index1] = feval(fltrl,y,grdl,ordl,devl);
[v2,ndim, index2] = feval(fltr2,y,grd2,ord2,dev2);
alpha = feval(wt,y);
for i = 1:nint
for k index1(1,i):index1(2,1)
for j index2(1,1i):index2(2,1)
u = vl(k-index1(1,i)+1,i)*v2(j-index2(1,i)+1,1);
A(k,j) = Ak,j)+(b-a)*u*weight(i)*alpha(i)/2;
end;
end;

oY)
1l

54
DISTRIBUTION A: Approved for Public Release; Distribution Unlimited



end;
end;
return;

A.3.7 UNIFORM WEIGHTS

function [v]=unif(x)
%
% Description:
%  Uniform weight function.
%
v = ones(size(x));
return;

A.3.8 PLOT BASIS

function plot_basis(x,knots,order,deriv,filter)
% This function plots the basis functions for a particular polynomial splines
% with the given order and derivative for the knots specified.
[v,ndim,index] = feval(filter,x, knots, order, deriv);
nx = length(x);
v2 = zeros(ndim,nx);
for j=1:nx

for i=index(1,j):index(2,j)

v2(i,j) = v(i-index(1,j)+1,3);

end;
end;
plot(x,v2(1,:));
hold on;
pause;
for i=2:ndim

plot(x,v2(i,:));

pause;
end;
return;

A.3.9 SURF VALUE
function [v]=surf_value(x,y,pgrid,ntgrid,tgrid,torder,pdev,tdev,filter,coefp)
% Description: Evaluate the approximation for a finite number of slices at

% given z points pgrid(i) using logarithmic interpolation in p.
% Usage:

% [v] = surf_val(x,y,pgrid,ntgrid,tgrid,order,dev, filter,coefp);
% where:
% X : z values where surface is requested.
% y : r values where surface is requested.
% pgrid : grid points in z.
% ntgrid : number of r grid points at each z grid.
% tgrid : r grid points.
% order : order of spline.
% dev : order of derivative.
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% filter : filter used to impose boundary conditions.

% coefp : coefficients with respect to the standard basis at each
% pressure values in pgrid(i).
% v : value of the p-logarithmic interpolating slice function.

lenx = length(x);
v = [1;
n = length(pgrid);
for i=1:lenx

for j=1:n-1

% Interpolate between first two slices.

if ((x(1) >=pgrid(j)) & (x(i) < pgrid(j+1)))
%weightl=(log(x(i))-log(pgrid(jd))/(log(pgrid(j+1))-
log(pgrid(jd));
weight1=(x(i)-pgrid(j))/(pgrid(j+1)-pgrid(j));
tmp_gridl = tgrid(j,l:ntgrid(j));
tmp_grid2 = tgrid(j+1,1l:ntgrid(j+1));
if (pdev == 1)
weight2 = 1/(x(1)*(log(pgrid(j+1))-log(pgrid(jd)));
tmp_grid_p = (tmp_grid2-tmp_gridl)*weight2;
end;
tmp_grid_t = tmp_gridl + (tmp_grid2-tmp_gridl)*weightl;
tmp_coefl = coefp(j,:);
tmp_coef2 = coefp(j+1,:);
if (pdev == 1)
weight2 = 1/(x(1)*(log(pgrid(j+1))-log(pgrid(jdl));
tmp_coef_p = (tmp_coef2-tmp_coefl)*weight2;
end;
tmp_coef_t = tmp_coefl + (tmp_coef2-tmp_coefl)*weightl;
end;
end;

%
% Calculate the surface value at points requested.
%

tmp = vspline(y,tmp_grid_t,torder,tdev,filter,tmp_coef t);
v = [v,tmp’];

end;

return;

A.3.10 DEFINING THE REFRACTIVE INDEX

function [n] = rindex_profile(r,z,mua,theta,A,nbar)
%This function computes the refractive index profile from this class of
functions:

% n(r,z) = A¥*exp(-r"2/theta”2)*exp(-mua*z)
%
% Input:
% X : x grid of size nx x 1
% y : y grid of size ny x 1
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% z

% mua
% theta
% A

% nbar
%

% Output:
% n

nr = length(r);
nz = length(z);
n = zeros(nr,nz);
for i=1:nr

for j=1:nz

z grid of size nz x 1

absorption coefficient (scalar)
spread parameter (scalar)

percent deviation from nbar (scalar)
background refractive index (scalar)

refractive index profile at (r,z) of size nr x nz

n(i,j) = -A*exp(-(r(i)"2)/(theta”2))*exp(-mua*z(j))+nbar;

end;
end;
return;
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